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Thermal expansion in insulating materials 
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A model of thermal expansion in terms of the Morse potential which was developed 
earlier for low temperatures is extended to high temperatures and applied to a semi- 
empirical calculation of thermal expansion in insulating materials. In this model, the 
localized quantum mechanical solutions of the Morse potential are combined with the 
Debye model to give a localized-continuum description of thermal expansion. A set of 
empirical rules is developed for characterizing the interatomic potential in terms of the 
Morse potential. These are then applied to the quantitative calculation of thermal 
expansion in the alkali halide crystals and a group of binary high temperature materials 
with the aid of the known crystal structures, compressibilities, and Debye temperatures 
of these materials. Good agreement between calculated and experimental values is obtained 
for temperatures ranging between 0 K to values near the melting points. A discussion of 
the underlying basis of the empirical rules is given as well as their likely applicability to a 
wide range of insulating materials. 

1. I n t r o d u e t i o n  
An indication of the importance of thermal 
expansion as a property of materials is the number 
of papers which have appeared on the subject. A 
large number of publications have treated the 
subject from many different points of view, 
using theoretical, experimental, and empirical 
approaches. While considerable progress has been 
made in understanding thermal expansion in 
materials, it would be quite desirable to be able 
to estimate or predict the thermal expansion of 
a wide range of materials by means of a general 
but simple technique which requires little if any 
experimental input. This is particularly true of 
insulating and ceramic materials which display 
not only a wide range of values of thermal 
expansion coefficients, but also of bond types 
and other physical properties as well. 

This work will report on progress toward 
reaching this goal which has made use of a localized- 
continuum model of thermal expansion developed 
earlier for studying the elastic moduli and thermal 
expansion in cubic metals [11. In this model, the 
quantum mechanical solutions for the localized 
interatomic potential are thermally averaged and 
combined with the Debye approximation. The 
thermal expansion arises from the nonsymmetric 
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property of the interatomic potential. Thus the 
thermal expansion in this model is determined by 
a few parameters which characterize the inter- 
atomic potential. In actual calculations, the 
thermal expansion has been determined by making 
use of the Morse potential as a model interatomic 
potential. Since the quantum mechanical solutions 
for the Morse potential are known exactly, it is 
possible to construct a detailed theoretical descrip- 
tion of the thermal expansion if a fit of the Morse 
potential to the actual interatomic potential is 
made. It is rather easy to show that at low tem- 
peratures, according to this approach, the coef- 
ficient of thermal expansion has the same 
functional form as the specific heat, and the 
multiplicative constants involve the parameters of 
the effective Morse potential. 

This approach is promising in that the thermal 
expansion curve can be predicted, in principle, 
from a few parameters characterizing the inter- 
atomic potential. The accuracy of the predicted 
curves should be quite good up to temperatures 
approaching the melting points. Thus, the problem 
of predicting the thermal expansion is reduced to 
one of characterizing the interatomic potential 
with as little extra experimental information as 
possible. 
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2. Thermal expansion in terms of the 
Morse potential 

The low temperature formulas for the thermal 
expansion Al/l and the coefficient of  thermal 
expansion a(T) were previously found [1] to be 

ZXl/t = (3kT/2arnD)(r/Oh)3f(Xo) (1) 
and 

o:(T) = (3k/2aroD)(T/Oo)3g(xh) (2) 

where a and D are the inverse width and depth, 
respectively, of the Morse potential, 0o is the 
Debye temperature, and x D = OD/T. The integrals 
f(XD) and g(XD)are given by 

f; D x3dx 
f(XD) = e x -- 1 

and 

f: 
D x4eXdx 

g(XD) = (e x -- 1) ~ 

These formulas were derived within the frame- 
work of the Debye approximation which assumes 
that the Debye temperature is constant. In real 
materials, however, this quantity varies with tem- 
perature as a result of volume dependent anhar- 
monic effects, and the actual vibrational frequency 
spectra are more complex in form than that of the 
Debye model. The variation in the Debye tem- 
perature can be as high as -+ 10% or more, but the 
error involved in ignoring this temperature variation 
is much smaller than the other errors in the 
calculations which will be discussed later. Conse- 
quently, the Debye temperatures for all materials 
will be assumed to be constant, with the exper- 
imental values normally taken from extrapolation 
of elastic constant or specific heat data to 0K. 
Since the nearest neighbour distance rn usually 
appears with a, it is convenient to consider am, 
the reduced inverse width of the potential, as a 
single variable. Generally the Equations 1 and 2 
appear to be accurate up to about 0.70D, and 
give the dominant contributions over the entire 
temperature range. The next step is to extend 
these formulas to higher temperatures. In the 
Appendix, it is demonstrated that the next most 
important contributions to these two quantities 
are given by 

(AI/l)l = (3kT/2ar.D) (kT/4D) (T/Oh)3fl (XD) 

(3) 

and 

c~(T)I = (3k/2arnO)(kT/2D)(T/Oo )3g~(xD ) 

(4) 

fo x4(l + e") dx where f l ( x D ) =  XD ~ x - - - l )  ~ 

and 

f: D xSe~(l + e ")  
gl(xD) = (e x -- 1) 3 

At high temperatures, Equations 3 and 4 are 
fractional corrections to Equations 1 and 2, 
respectively, of magnitude kT/2D and kT/D. In 
most cases, these two contributions to the percent 
thermal expansion and the coefficient of thermal 
expansion are accurate representations of exper- 
imental data at temperatures approaching the 
melting point. Consequently, no further refine- 
ments of the formulas will be made for the suc- 
ceeding analysis, although it should be recognized 
that still higher order corrections can probably 
be made most easily by direct use of the solutions 
of the Morse potential rather than by considering 
further terms in the series expansion. 

The importance of these formulae lies in their 
ease of interpretation (the value of D is easily 
fixed by the high temperature behaviour of 
Equation 3 or 4, and the width of the potential 
can then be determined by the leading terms in 
Equation 1 or 2), and in the fact that they are 
derived from the exact solutions of a realistic 
interatomic potential. Application of the theory 
to real materials now requires that a connection 
between the Morse potential and the bottom of 
the interatomic potential be made, since thermal 
effects are unaffected by the shape of the potential 
well further up. As might be expected intuitively, 
some detailed calculations indicate that the 
thermal expansion is primarily determined by the 
overall shape of the potential well, and not by fine 
details of its point-to-point functional dependence. 

3. Thermal expansion in the alkali halides 
The most obvious starting point for the analysis 
of thermal expansion in insulators is the alkali 
halide crystals, since they most closely represent 
the ideal ionic model. Cohesion in such crYstals 
has been studied for many years and a considerable 
amount of empirical information has been accumu- 
lated. As has been previously discussed [1], the 
interatomic potential minimum in metals usually 
does not coincide with the nearest neighbour 
distance, a fact that introduces some analytical 
complications. This problem does not occur to 
any significant extent in insulators since the 
cohesive energy is well represented by the inter- 
atomic potential. Therefore the Morse potential 
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minimum is essentially at the nearest neighbour 
distance, and the potential, itself, has the form 

V(r) : D(1 -- e-a(r-rn)) 2 (5) 

For simplicity, we will represent the interatomic 
potential in the alkali halides by means of the 
Born potential 

V(r) = - - A i r  + B/r  rn (6) 

in which the attractive Coulomb term is counter- 
balanced by a simple power law repulsive term. 
The reasons for using this simple form for the 
potential energy lie primarily in its extreme 
simplicity and in the fact that more sophisticated 
potentials do not appear to increase the accuracy 
of the calculation to any significant extent. As is 
well known, at the equilibrium position (potential 
minimum), Equation 6 reduces to 

V(rn) = A / r n ( 1 - - m  -1) (7) 

so that 
B = Ar~n-1/m 

where A is given by 

A = b2e2M, 

M being the Madelung constant, e the electronic 
charge, and b the largest common factor in the 
valences of the atoms. The repulsive exponent m 
is directly related to the volume compressibility 
o by the equation 

m -- 1 = 913~/oA (8) 

where/3o 3 is the molecular volume. 
Although these equations are simple in form 

and easy to apply, it is necessary to make the 
connection between the two Equations 5 and 6 in 
order to actually calculate the thermal expansion 
of the alkali halides. Qualitatively speaking, it is 
evident that the depth of the potential well given 
in Equation 6 (representing the cohesive energy 
per ion in the crystal) is not the same as the 
depth D in the thermal potential energy well in 
Equation 5. This is because the latter is the energy 
associated with the maintenance of the crystalline 
or solid state, and this is an order of magnitude 
smaller than the cohesive energy. The cohesive 
energy is defined as the energy necessary to com- 
pletely separate all the ions in the crystal, whereas 
complete vaporization of the crystal usually results 
in a gas of diatomic molecules in the alkali halides 
which usually polymerize into larger aggregates. 
The energy of diatomic dissociation in the alkali 
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halides is the largest contribution to the cohesive 
energy and is an order of magnitude greater than 
the energy associated with the solid phase at 0 K, 
i.e. the energy necessary to raise the crystal up to 
the melting point plus the heat of fusion. The 
great disparity between this quantity E s and the 
cohesive energy arises from this difference, and is 
the reason why the lattice dynamical energy which 
determines the thermal properties of solids is not 
directly related to the cohesive energy. 

In line with these considerations, the most 
straight forward way to empirically determine 
the depth of the thermal potential well is to com- 
pare the magnitudes of E s, the energy necessary to 
destroy the solid state starting at OK, and the 
cohesive energy. Available thermochemical data 
indicates that in the alkali halides, E s is about 10% 
of the cohesive energy. This gives a convenient 
measure of the depth of the thermal potential 
in terms of a well known quantity. The inverse 
width a of the thermal potential can also be 
determined quite easily by noting that for the 
Morse potential, a = -- C/5K,  where C and K are 
the cubic and harmonic force, constants, respect- 
ively. Applying this condition to the potential, 
Equation 6, one obtains the result (m + 4)/5rn 
for the effective inverse width of the bottom of 
the potential well. These two empirical conditions 

O = 0.1 V ( r . )  (9) 

ar n = (m + 4)/5 (10) 

characterize the two parameters of the effective 
thermal Morse potential in terms of quantities 
which are well known for the alkali halides. 
Although the Born potential for these materials 
was characterized many years ago, this application 

TABLE I Potential well data for the alkali halides 

m V(rn)(Kcalmol -l) D(eVion -1) ar n 

LiF 5.9 238 0.52 1.98 
LiC1 8.0 196 0.43 2.40 
LiBr 8.7 186 0.40 2.54 

NaF 7.4* 216 0.47 2.28 
NaC1 9.1 182 0.39 2.62 
NaBr 9.5 173 0.38 2.70 

KF 7.9 189 0.41 2.38 
KCI 9.7 165 0.36 2.74 
KBr 10.0 158 0.34 2.80 

RbF 8.4" 180 0.39 2.48 
RbCI 9.9* 158 0.34 2.68 
RbBr 10.0 151 0.33 2.80 

*Interpolated values. 
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Figure 1 Theoretical versus experimental coefficient of 
thermal expansion for NaCI. The experimental points are 
the open circles and the solid curve is the theoretical 
result predicted by Equations 2 and 4. The dashed line 
is the contribution of the leading term Equation 2, which 
has the functional form of the specific heat and levels off 
to a constant value at high temperatures. The second term 
is linear in the temperature at high temperatures, and the 
fractional correction to the leading term at high tem- 
peratures is just kT/D. This easily fixes the depth of the 
potential well, and the width can be then determined 
from the dimensions of the leading term. Thus, the 
advantage of Equations 2 and 4 is that the dimensions 
of the effective potential well can be easily determined 
from experimental data, and vice versa. 

to the determination of the thermal expansion is, 
however, entirely new. The calculation of thermal 
expansion of these materials using these par- 
ameters is easily accomplished using Equations 5, 
6, 7, 8, 9 and 10, by using the known structures 
and Madelung constants of the alkali halides and 
the experimentally determined compressibilities 
[2]. The m values for the crystals for which 
Slater compressibilities were not determined were 
obtained by interpolating from the others. The 
potential well data so obtained for the alkali 
halides is listed in Table I, and the calculated 
percent thermal expansions for the alkali halides 
are compared with the experimental values obtained 
from the compilation of Toulot/kian et al. [3] in 
Table II. Fig. 1 illustrates a graphical comparison 
of the theoretical coefficient of thermal expansion 
for NaC1 with the experimental values. 

As can be seen by examining the results, the 
calculated values are in good agreement with the 
experiment, particularly since they represent 
an a priori calculation with a minimum of exper- 
imental input and no curve fitting. While this 
agreement tends to confirm the validity of 
Equations 9 and 10 as a method for choosing the 

parameters of the interatornic potential, the 
appendix discusses an independent method for 
checking the values of the parameters. The exper- 
imental values for the Debye temperatures are 
compared with a simple relation which approxi- 
mates the Debye temperatures and which involves 
only the parameters of the interatomic potential 
and the atomic masses. The generally good agree- 
ment between the two sets of values gives further 
confirmation to the validity of the values obtained 
from Equations 9 and 10. 

4. Thermal expansion in high temperature 
materials 

The alkali halides represent a particularly simple 
group of materials for applying the model for 
thermal expansion which has been presented 
here since they most closely correspond in their 
properties to the classical ionic model. In expanding 
the analysis tO a broader category of insulating 
materials, a basic question concerns the applica- 
bility of an ionic interatomic potential to materials 
which are generally less ionic than the alkali 
halides. The question of bonding mechanisms in 
materials is a complex one which is still the subject 
of lively debate, but the only question which need 
concern us here is whether the potential in 
Equation 6 together with the empirical criteria, 
Equations 9 and 10 can be used to characterize 
the shape of the bottom of the interatomic poten- 
tial in a larger class of materials than the alkali 
halides. This question is not necessarily directly 
related to the nature of  the overall bonding 
mechanism, and an affirmative answer would 
afford a greatly simplified means of analysing 
thermal expansion in a wide range of materials 
without a cumbersome analysis of bond type for 
each particular case. 

The most direct way to examine this question 
would be to make use of thermochemical data 
for a wide range of materials as was done in the 
case of the alkali halides. Unfortunately, such 
data are usually unavailable, or are too fragmentary 
to be definitive. Because of this, the question will 
be examined from a somewhat more heurestic 
point of view. A group of insulators with high 
melting temperatures and different crystal struc- 
tures, with bond types ranging from predominantly 
ionic to predominantly covalent will be treated 
according to the methods previously used for the 
alkali halides. The parameters of the potential 
wells so obtained will be used to compute approxi- 
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mate Debye temperatures which are compared in 
the appendix with the experimental values. Agree- 
ment comparable to that found in the alkali 
halides is taken as an indication that the potential 
well parameters found for these materials are 
valid, and they are then used to compute the 
thermal expansions. The relatively good agreement 
between the calculated and observed values is 
consistent with the conclusion that the simple 
empirical approach to thermal expansion developed 
for the alkali halides is applicable to a wide range 
of insulating materials. 

The application of the potential in Equation 6 
to any class of materials is quite simple so long as 
the crystal structure and associated Madelung 
constant, volume compressibility, and atomic 
valences are known. By concentrating on atomic 
valences rather than effective charges, the whole 
question of ionicity is avoided and the potential 
can be used for completely covalent materials 
where the idea of ionic charges is meaningless. 
Of the required quantities, the only one which 
is not generally available is the volume com- 
pressibility. Because many insulators are much 
harder than the alkali halides, static compressibility 
measurements such as were made on them many 
years ago are usually much more difficult to 
accomplish and are probably less reliable. The 
compressibility can also be obtained from elastic 
constant measurements which are much more 
reliable, but these measurements are available for 
only a limited number of materials. Although the 
calculated cohesive energy is quite insensitive to 
the magnitude of the repulsive exponent, it is 
evident from Equation 10 that the effective 
width of the thermal potential is sensitive to the 
value of rn so that a means of accurately estimating 
its value is needed when accurate compressibilities 
are not available. 

In the early days of the application of the Born 
model, it was usually assumed that the repulsive 
exponent was only dependent upon electronic 

configurations and not the valences of the con- 
stituent atoms in the crystal. The m values for 
the alkali halides and other materials composed 
of monovalent atoms could then be used for 
materials having the same electronic configurations 
but larger valences in the constituent atoms. 
However, more recent compressibility measure- 
ments indicate that this assumption is not correct. 
Table III contains compressibility data for a group 
of oxide materials having relatively high melting 
points and hardness which were obtained from 
elastic constant and static compression measure- 
ments, references [4, 5] for TiO2, reference [6] 
for AI2Oa, reference [7] for MgO, and reference 
[8] for CaO, SrO and BaO. The table compares 
the values of m obtained from these measured 
compressibilities using Equation 8 with the rn 
values for the corresponding alkali halides having 
the same anion-cation electronic configurations 
and which are labeled rnl. As can be seen from 
the table, the calculated m values based upon the 
experimental compressibilities are very different 
from the values ml .  This is not surprising since 
one would expect materials which are an order 
of magnitude harder than the alkali halides to have 
a much higher percentage of their cohesive energies 
included in the repulsive energies, as indicated by 
Equation 7. Instead of an equality between the 
values of rn and m 1, the data in Table III indicate 
that m - -1 ,  which is given by Equation 8, scales 
according to the average valence of the atoms in 
the material. If  q is the average valence of the 
atoms and m l is the monovalent repulsive 
exponent for the same anion-cation electronic 
configurations, then 

m q - - I  = ( m l - - 1 ) / q  (11) 

The last column in Table III corresponds to mq 
for each of the listed materials and it is evident 
that there is a very good correspondence between 
these numbers and the values of m obtained from 
the compressibility data. The compressibility data 

TABLE III Repulsive energy data for various oxides 

a(lO -x3 em 2 dyne ~) m (cale) rn 1 I + ( r n l  - -  1 ) / q  

TiO z 4.73 3.6 7.9 3.6 
A1203 3.99 4.2 7.4 3.7 
MgO 6.54 4.3 7.4 4.2 
CaO 8.8 5.2 7.9 4.5 
SrO 8.3 6.9 8.4 4.7 
BaO 17.4 4.7 8.7 4.8 
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for the last three materials in the table were 
obtained from static compression measurements, 
and considering the difficulty in this type of 
measurement, the values of m obtained from 
Equation 11 may be more accurate than those 
obtained from the experimental data. 

Making use of Equation 11 in addition to those 
already used for the alkali halides, it is a simple 
matter to develop potential well data for a wide 
range of insulating materials with readily available 
information. In order to test this procedure, we 
have chosen a group of five high temperature 
insulators which vary widely in physical charac- 
teristics including bonding mechanism, crystal 
structure, hardness, etc. These particular materials 
were chosen because of their range of properties, 
and the reliability of the experimental thermal 
expansion data and Debye temperatures for each 
of them. The materials are placed in order of 
decreasing ionicity, with MgO being the most ionic 
and diamond the least. The calculated potential 
well data are listed in Table IV for these materials. 
The values of mq for the first three materials were 
obtained from Equation 11 rather than from the 
experimental compressibilities partly for con- 
sistency, and partly because mq should be obtained 
from the compressibilities extrapolated to zero 
temperature and pressure, which cannot be done 
from a single measurement. Since there is little 
difference between the two sets of values, this 
choice does not produce any important differences 
with the experimental data. The data in Table IV 
are used to calculate approximate Debye tem- 
peratures which are compared with the exper- 
imental values in the appendix and calculated 
percent thermal expansions which are compared 
in Table V with observed values taken from 
reference [3]. 

The calculated Debye temperatures in the 
appendix agree with the experimental values about 
as well as do those for the alkali halides, which 
supports the conclusion that the potential well 
parameters for these materials listed in Table IV 

TAB LE IV Potential well data for various high tempera- 
ture materials 

mq V(rn)(Kcalmo1-1) D(eVion -I) arn 

MgO 4.2 834 1.81 
AI~O 3 3.7 3158 2.74 
TiO 2 3.6 2339 3.38 
SiC 2.6 2854 6.19 
Diamond 2.2 1560 6.77 

are reasonably accurate. This conclusion is further 
supported by the good agreement between cal- 
culated and observed thermal expansions in 
Table V. Since the calculational procedure used 
here gives what is basically an average potential 
well for non-cubic crystals, the average or poly- 
crystalline thermal expansions for TiO2 and 
A1203 are compared with the calculated values. 
Since TiO2 (rutile) has about a 30% anisotropy 
in the thermal expansion in the two different 
directions, the results indicate that this procedure 
is still accurate for anisotropies at least that large. 
(In A1203 the anisotropy is considerably less). 

The most interesting observation which can be 
made from the results in Table V is that the 
accuracy of the calculated results is only slightly 
poorer than in the alkali halides and virtually 
uniform for each of the materials, in spite of 
the fact that beginning with the alkali halides, 
proceeding to MgO, and on to diamond, the 
materials represent virtually every possible bonding 
mechanism. This suggests, rather surprisingly, that 
the empirical procedure developed for determining 
the shape of the thermal part of the interatomic 
potential in the alkali halides, which are decidedly 
ionic, appears to be appficable to other insulators, 
regardless of bond type. However, it must be 
remembered that while V(rn) represents the 
cohesive energy per ion in a purely ionic crystal, 
it is purely an artifice of the calculation in any 
other type of crystal. Consequently, in an ionic 
crystal, 0.1 V(rn), representing the depth of the 
effective thermal potential, is a small part of the 
cohesive energy. In a covalently bound crystal, 
however, one would expect that the shape of the 
interatomic potential more closely approximates 
the shape of the Morse potential, so that 0.1 V(rn) 
should approximate the cohesive energy, itself. 
It is interesting to observe, in line with this, that 
0.1 V(rn) for SiC and diamond, as obtained from 
Table IV, is 285 Kcal mo1-1 and 156 Kcal tool -1, 
respectively, which compare favorably with 
quoted [9] values of 283Kcalmo1-1 and 
170 Kcal tool -a for their cohesive energies. 

5. Conclusions 
A theoretical procedure for calculating the thermal 

1.64 expansion in solid materials has been developed 
1.54 using the Morse potential as an approximation to 
1.52 the bottom or thermal part of the actual inter- 
1.32 atomic potential. In terms of the Morse potential, 
1.25 the theory of thermal expansion is relatively simple 
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to apply, involving only the two parameters of the 
Morse potential. Two leading terms in the theory 
are usually sufficient to describe the thermal 
expansion over temperatures covering the existence 
of the solid phase, and the use of just these two 
terms makes the calculations simple and easy to 
interpret. Because the fractional corrections 
Equations 3 and 4 to the thermal expansion and 
coefficient of thermal expansion at high tem- 
peratures are of magnitudes kT/2D and kT/D, 
respectively, it is easy to establish the magnitude 
of D by inspecting experimental data, and from 
this, the magnitude of a from the leading terms 
in Equations 1 and 2. Therefore, the parameters 
of the potential can be determined rather easily 
from experimental data or vice versa. 

The actual application of the theory to real 
materials requires that a connection be made 
between the Morse potential and the crystalline 
interatomic potential. This was done for the 
alkali halide crystals by relating the Born ionic 
potential to the Morse potential by empirical 
means. Making use of the known crystal structures 
and compressibilities of the alkali halides, the 
theory was used to calculate thermal expansions 
for these materials which are in good agreement 
with the experiment. The empirical approach was 
extended for application to other insulators as 
well, and applied to a group of high temperature 
materials having a wide variation in bonding 
mechanisms. The agreement was once again quite 
good, suggesting that the approach developed here 
may be applicable to the prediction of the thermal 
expansion properties of a wide range of insulating 
materials. 

Appendix 1. Higher order corrections to 
the thermal expansion 
It was previously demonstrated [1] that the 
diagonal matrix elements for the displacement 
associated with the Morse potential can be 
expressed in a convenient analytical form by 
making use of the asymptotic form of the digamma 
function as well as its recurrence relation. This 
procedure was only carried through to first order 
in the frequency, but is easily extended to second 
order. The result is 

(rk) --rn = 2(at)- '(k + ~) + (at2) -~ 

k+l 

x ~ (k + i + 1/12).+ O(t -3) 
i=1 
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for the principal quantum number k, where 
t = 4D/h~o, and co = a(2D/p) in is the frequency 
of small oscillations. Obtaining the thermal 
expansion from this expression requires, as was 
discussed earlier, that a thermal average over all 
quantum numbers of this expression be made, 
and that this result be integrated over the complete 
Debye frequency spectrum. This procedure was 
carried out for the first order term, and it is 
basically the same for the second order term, 
except for some minor points which will be 
discussed here. 

The form of the second older term is not one 
which is easily summed over all quantum num- 
bers. However, this problem is easily remedied by 
observing that 

k+l 

2 (k+i+ 1]12)= [13112+ ~ (2k 2 + 3k)] 
kffiO i=l k=l 

The first or constant term is not thermally averaged 
and represents a small correction to the zero- 
point displacement. The last term, which is linear 
in the principal quantum number, is a small correc- 
tion to the leading contribution which is linear in 
the frequency and which was treated earlier. This 
leaves the term in k 2 as the primary contributor to 
the thermal expansion from the second term in the 
displacement. Making use of the relation 

k2e -k:r = eX( 1 + e x) 
k=0 (e x -- 1)3 

the summation involved in the thermal average 
is easily made. Integration over the Debye fre- 
quency spectrum then results in two contributions, 
one of which gives small corrections to the leading 
terms in the thermal expansion in Equation 1 or 2, 
while the second results in the contributions of 
Equation 3 and 4. Aside from the negligible 
corrections, and contributions of higher order in 
the temperature which usually are not significant, 
the thermal expansion is well represented by the 

two  contributions in Equations 1 and 3 or 
Equations 2 and 4. 

Appendix 2. Approximate values of the 
Debye temperature from the parameters of 
the interatomic potential 
Although there is no exact connection between 
the Debye temperature and the characteristics 
of the nearest neighbour interatomic potential in 



TABLE VI Experimental Debye temperatures versus 
approximate calculated values for some simple metals 

Metal 0 D ( K )  (2h/k)a(2D/m) ~'2(K) 

A1 430 543 
Cu 340 347 
Au 162 195 
Pb 105 110 
Ag 227 226 
Th 165 171 
Fe 477 501 
K 91 137 
Na 158 223 
V 399 692 
W 384 416 

real crystals, an approximate connection is useful 
as a check on the parameters of  the Morse poten. 
tials used in the calculations. The Debye tempera- 
ture is proportional to a cutoff  or maximum 
frequency of  propagation in the crystal according 
to the assumptions of  the Debye theory. A well 
known result for the linear monatomic chain is 
that the maximum frequency for this simple case 
is just twice the natural frequency of  oscillation 
for one mass point attached to one o f  the springs. 

TABLE VII Experimental Debye temperatures versus 
approximate calculated values for some insulating com- 
pounds 

Compound 0D(K) (2tt/k)a(2D/v) t'2(K) 

NaC1 322 328 
LiF 732 670 
LiCI 422 540 
NaF 492 444 
NaBr 225 280 
KF 336 340 
KC1 235 258 
KBr 174 204 
RbC1 165 202 
RbBr 131 154 

MgO 946 716 
A1203 1006 890 
TiO 2 703 872 
SiC 990 1356 
Diamond 1840" 1824 

*High temperature value (T~ OD/2). Low temperature 
value is 2230 K. 

Using the corresponding frequency for the Morse 
potential, the Debye temperature for this case 
is given by 0 n = (2h/k)a(2D/m) u2. Although the 
situation in a three dimensional crystal is not the 
same, it is interesting to note from Table VI that 
this formula gives a good correlation with the 
experimental values for a group of  simple metals 
whose Morse potential parameters had been deter- 
mined previously [1]. 

The same formula can be applied to the insu- 
lating compounds considered in this work, but 
vr the anion-ca t ion  reduced mass substituted 
in the formula for the atomic mass. The results are 
displayed in Table VII, and once again there is a 
good correlation between the calculated and 
experimental values, considering the fact that a 
20% or more variation in the Debye temperature 
is not  unusual. The experimental values are gener- 
ally from specific heat or elastic constant data 
extrapolated to 0 K, although the high temperature 
value for diamond was used since it appeared to 
be more appropriate for the thermal expansion 
calculations. The agreement for the high tem- 
perature insulators is about as good as for the 
alkali halides, indicating that the Morse potential 
parameters used for these materials are reason- 
ably accurate. 
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